Recent Studies Demonstrate Effectiveness of BMI

In a recent study, Halo Lab’s Aura® platform (formerly known as HORIZON) was optimized and compared to LO, the MFI™ 5200 Series by ProteinSimple, and the FlowCam® 8000 Series by Fluid Imaging Technologies. The study compared precision, linearity, subvisible particle (SVP) concentration, and morphological output of BMI compared to the other three techniques. BMI was shown to be a useful tool in measuring protein aggregates in a high-throughput manner. The authors showed that it is a simple, fast method and can produce similar or better precision and sensitivity to current dynamic flow imaging techniques, eliminating the need for large sample volumes and long analysis time.1

In a second study, the goal was to evaluate BMI for its use in the analysis of SVPs and to compare it to DIA methods for pharmaceutically relevant drugs. The authors wrote, “The team demonstrated BMI to be a suitable orthogonal method for the characterization of subvisible particulate matter in biopharmaceutical products. Especially, simplicity of sample processing, high achievable throughput, use of disposable consumables, and low required sample volume can make BMI an attractive alternative or complement to particle analysis by DIA. In particular, BMI might be a highly valuable tool for high-throughput screenings, for example, in formulation development, where various formulations with different excipients and thus disparate properties (e.g., refractive index) need to be compared.”2

Based on their findings, the authors concluded: “We suggest an adaptation of the Aura hardware to enable imaging of complete wells, therefore, enabling accurate particle counting.”2

The results of these studies demonstrate that BMI can be successfully applied to characterize subvisible particulate matter in biopharmaceutical products. This technology offers a simple and efficient approach for the characterization of these particles, which is valuable for ensuring product quality and safety.

With Halo Lab’s Aura PTx, which utilizes BMI as its primary analytical technique, there’s a better way to perform particle analysis. Aura PTx makes it easy to quickly identify and count aggregates that form due to degraded polysorbate in your formulation. And with two-channel fluorescence, you can determine if aggregation in your protein therapy is caused by proteins or polysorbates in your sample – at the same time.

To learn more about background membrane imaging and how Aura PTx can get you to your best formulation faster, visit: